Hyperscale Storage Perspectives

Ross Stenfort, Meta May 2023

Agenda

- SSD Form Factors
- Storage Boxes
- SSD Specification Challenges
- Write Amplification Challenges

SSD Form Factor Challenge/Solution

M.2 Challenges

- Power limited
- Connector challenges
 - Need connector designed for PCIe 5.0 and beyond
- Insufficient NAND placements
- Serviceability
- Security

Market Needs

- PCIe[®] 5.0 and beyond
- Scalable power, performance, thermal
- Density in 1 OU
- Serviceability
- Security

E1.S Solution

- Connector designed for PCIe
 5.0 and beyond
- Scales performance, power and thermal
- Supports 1 OU density
- Serviceability
- Security

Significant E1.S Growth

Share of Datacenter/ Enterprise PCIe Units*:

* Data excludes SSD consumption where companies buy NAND and build SSDs for internal use.

Real World Hyperscale Systems

4OU Chassis with 48 25mm E1.S SSDs

Up to 768 TB

4OU Chassis with 36 25mm E1.S SSDs

Up to 576 TB

Links to OCP YV3 Contributions:

Yosemite V3: E1.S Faceplate:

https://www.opencompute.org/documents/e1s-faceplate-referencedesign-specification-pdf

Yosemite V3: Vernal Falls E1.S 1OU Flash Blade and Expansion Board

https://www.opencompute.org/documents/e1s-expansion-1ou-1sserver-design-specification-pdf

Yosemite V3: Sierra Point E1.S 2OU Flash Blade and Expansion Board

https://www.opencompute.org/documents/e1s-expansion-2ou-1sserver-design-specification-pdf

Yosemite V3 Platform Design

https://www.opencompute.org/documents/ocp-yosemite-v3-platformdesign-specification-1v16-pdf

Delta Lake 1S Server Design

https://www.opencompute.org/documents/delta-lake-1s-server-designspecification-1v05-pdf

SSD Specification Challenge

Customer requirements are confidential

- Standards have many optional features
- Real customer requirement is unclear
- Limited competition
 - Access to specifications are limited based on customer/supplier relationships
- SSD industry highly fragmented with lots of SKUs
 - Many customers ask for similar, but different features
 - SSD Suppliers have finite resources
- 3rd party test providers don't know what customers require

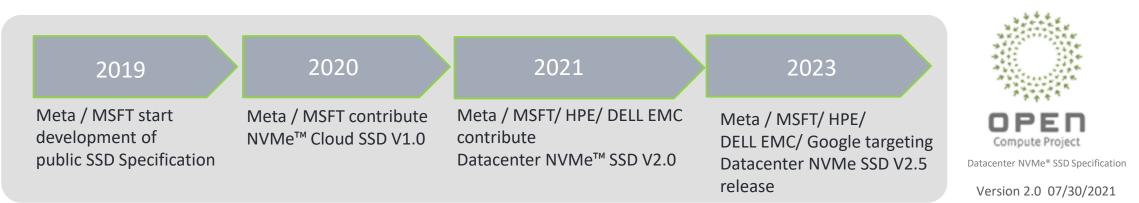
- Product introduction delays
- Lower quality
- Difficult product/feature decisions

SSD Spec Solution: OCP Datacenter NVMe[™] SSD Spec

Datacenter NVMe SSD Spec Goals

- Align Hyperscale/OEMs and SSD Vendors
 - Common features results in focused resources, improved speed and quality of results
- Share learnings based on deployments at scale
 - Example: Latency Monitoring
- Provide everything needed to build a Hyperscale / OEM SSD

Datacenter NVMe SSD Spec Coverage


Security

- NVM Express[®] Thermal
- PCI Express[®]
- Reliability

Open-Source Tooling

• NVMe-CLI/ plugins / OCP

https://github.com/linux-nvme/nvme-cli

Link to specification: https://www.opencompute.org/documents/datacenter-nvme-ssd-specification-v2-0r21-pdf

Result:

- More features, Better quality, and Faster
- OCP Datacenter NVMe Specification is an industry collaboration win

- SMART Logs
- Power
- Form Factor SMBUS

Write Amplification Overview

✤ What is Write Amplification (WA)?

- When the host sends write data to the device it is additional data that is written to the media.
- Write Amplification Factor (WAF) = media written data/ host written data

✤ WAF = 2.5 Example

- Host writes 1 MB
- Device writes 2.5 MB to the media
- Thus Device
 - Media Writes
 - 1 MB Host Data
 - Additional 1.5 MB Garbage Collected Data
 - Extra Media reads to enable host write
 - <u>1.5+ MB</u>

Why is Write Amplification Undesirable?

- Write Amplification results in additional:
 - Media Reads/ Writes affecting performance/ QOS
 - Flash media writes causing non-host induced media wear
 - Additional power needed to perform the additional reads/writes
- Random Write example:

Write Amplification Factor	Write Performance
1	Random Write = Sequential Write
5	Random Write = 20% Sequential Write

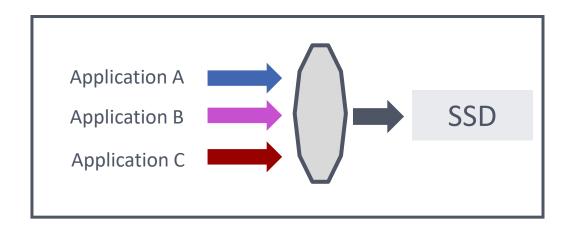
Write Amplification Improvements History

Write Amplification Improvement Timeline:

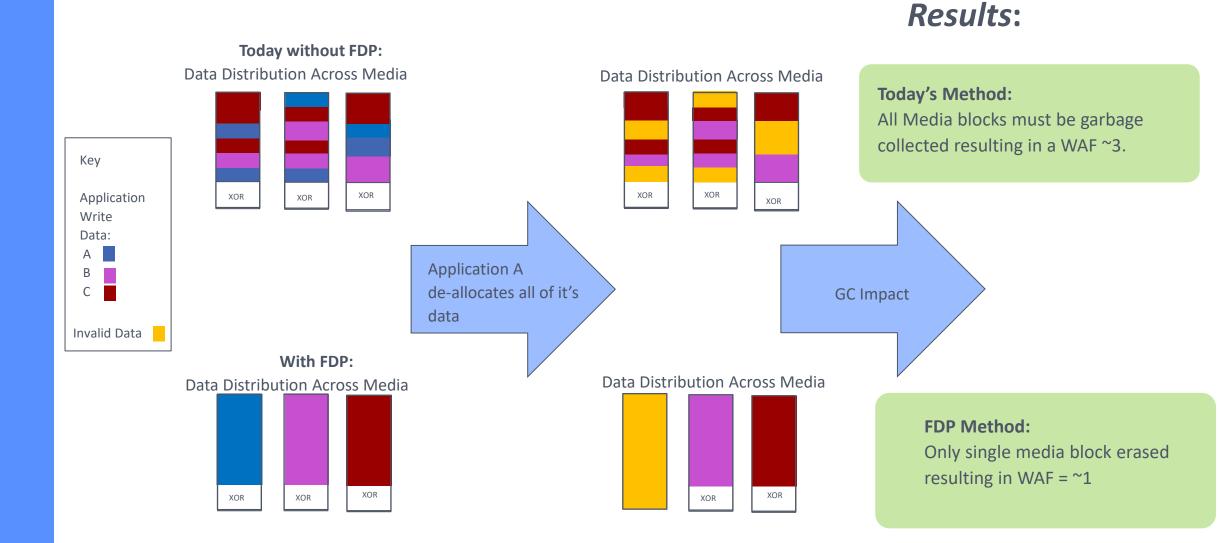
- How did Flexible Data Placement come about?
 - Google Write Amplification Investigation Result
 - Data placement on media is key
 - SMART FTL Proposal
 - Meta Write Amplification Investigation Result
 - Data placement on media is key
 - Direct Placement Mode Proposal
 - Google & Meta merged their independent learnings into Flexible Data Placement (FDP) merging the best features of each proposal to enable best industry solution
- What is the status of this in NVM Express?
 - TP4146 is fully ratified
 - Link: <u>https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_12122022.zip</u>

Flexible Data Placement (FDP) Overview

Enables host to provide hint where to place data


- Virtual handle/pointer
- Device changes:
 - Places data in super block based on a host hint rather than choosing it's own super block.
 - Advertises size of super block
- What functionality does not change
 - Read
 - Write (Optional media placement hint added)
 - Deallocate/TRIM
 - Security
- Backwards compatibility
 - FDP may be enabled/disabled on standard devices
 - Applications are not required to understand FDP to benefit
 - Applications which understand FDP have increased benefits

FDP Use Case Example: Disaggregated Storage


Multi-user/ Multi-workload/ Disaggregated Storage

Today's Challenges

- Application's Data is Mixed
- Device performance is unstable
 - Never reaches "steady state" due to mixed workloads
- Overprovisioning is increased until Write Amplification (WA) is low enough and performance appears stable
- Workload changes causes process above to repeat

Flexible Data Placement (FDP) Use Case Example: Disaggregated Storage

FDP Open-Source Activities

- Goal: Support FDP through a full upstream I/O Path
- Current Support:
 - Linux Kernel: Full support through I/O Passthru (Upstream since 5.19)
 - xNVMe: Full support (Upstream since v0.7)
 - **QEMU**: FDP Emulation (Upstream since v8.0)
 - Validation of host stack. No simulation (e.g., WAF, performance)
 - **Fio**: Basic support for RU and RUH (Upstream)
 - Working on improving generic trim in io_uring (Ongoing)
 - nvme-cli: Support for FDP commands and log pages (Upstream)
 - **Cachelib**: Ongoing effort to reduce WAF through FDP (Ongoing)

Resources

- OCP Storage Project Link: <u>https://www.opencompute.org/projects/storage</u>
 - Meeting calendar with dial in information
- OCP Contribution database:
 - https://www.opencompute.org/contributions
- OCP Referenced Contributions:
 - Yosemite V3: E1.S Faceplate <u>https://www.opencompute.org/documents/e1s-faceplate-reference-design-specification-pdf</u>
 - Yosemite V3: Vernal Falls E1.S 1OU Flash Blade and Expansion Board: <u>https://www.opencompute.org/documents/e1s-expansion-1ou-1s-server-design-specification-pdf</u>
 - Yosemite V3: Sierra Point E1.S 2OU Flash Bald and Expansion Board: <u>https://www.opencompute.org/documents/e1s-expansion-2ou-1s-server-design-specification-pdf</u>
 - Yosemite V3 Platform Design: <u>https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-specification-1v16-pdf</u>
 - Delta Lake 1S Server Design: <u>https://www.opencompute.org/documents/delta-lake-1s-server-design-specification-1v05-pdf</u>
 - Datacenter NVMe SSD Specification V2.0: <u>https://www.opencompute.org/documents/datacenter-nvme-ssd-specification-v2-</u> <u>0r21-pdf</u>

Thank You